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Anomalous fluctuations of active polar filaments
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Using a simple model, we study the fluctuating dynamics of inextensible, semiflexible polar filaments
interacting with active and directed force generating centers such as molecular motors. Taking into account the
fact that the activity occurs on time scales comparable to the filament relaxation time, we obtain some
unexpected differences between both the steady-state and dynamical behaviors of active as compared to
passive filaments. For the statics, the filaments have a length-scale-dependent rigidity. Dynamically, we find
strongly enhanced anomalous diffusion.
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. INTRODUCTION equilibrium, it decays exponentiallyc(s) = exy —|sl/L,],
which defines the persistence lendth.

Filamentous proteins are major components of the cell
cytoskeletorj1]. Examples are actin filaments, microtubules, II. MAIN RESULTS
and intermediate filaments. Their mechanical properties are
important for cell stability and support and have been well We calculateC(s) and find that due to activity on a time
studied at thermodynamic equilibrium kg vitro experi- scale 7, the filaments develop dength-scaledependent
ments. However, the conditions in the living cell are verybending rigidity. On short length scales, typical conforma-
different from those in the laboratory. Protein filaments in-tions have the bare persistence length while on longer length
teract with other proteins such as molecular motors and crosscales the filaments may be characterized by a lower “renor-
linkers. This has led to a flurry of receintvitro experiments malized” persistence length. There iessoverength be-
of mixtures of filaments and their associated proteins in ordetween the two regimes,.~ (7kgTL, /27 7) Y4 Therefore an
to compare with their purified staf2—4]. From a theoretical analysis of the filament conformations can give information
point of view, the proteins are typically far from equilibrium about the timescale at which the activity occurs. We also
and, therefore, even to understand their steady-state behawbtain modified relaxational dynamics with anomalous diffu-
ior, one has to study their dynamics. Nonequilibrium effectssion, which we show has an effect on the high frequency
have also recently been studied in biological membranes
[5,6].

In this paper, motivated by recent experimentsFeactin
and myosin in the presence of adenosine triphospi#&ie)

[4], we study an example of the nonequilibrium behavior of
biofilaments: the fluctuating dynamics of polar filaments
with active centers. This is also a model system for the study,
of nontrivial aspects of semiflexible filament dynamics. A
key point of our analysis is the fact that the activity of the
proteins occurs over a time scatewhich may be compa-
rable to the relaxation time of the filament. Unlike recent
work on motile solutiong7], the active centers considered
here are associated with single filamefits., are not cross
links) and cannot move one filament with respect to another
The viscosity of the solvent is given by. We note that the
typical energy scale of a biochemical reaction is of the order|
of a fewkgT at physiological conditions.

The filament can be parametrized by a curve through itd
center,R(s) (see Fig. 1L The unit tangent vector is defined
as t(s)=0dR/ds. An easily measured quantity using, e.g., (c)
video microscopy is the steady-state tangent correlatio

function C(s)=(t(s) - t(0)). For a semiflexible polymer in FIG. 1. (@ The fluctuatingpolar filaments of persistence length
L, parametrized byR(s,t) decorated by active centers. Note that
there is a+ and a— end for each filamentb) The filament on
*Permanent address: Department of Applied Mathematics, Unitength scales below, showing the transverse (s,t) and longitu-
versity of Leeds, Leeds LS29JT, UK. Email address:dinalr(s,t) motion.(c) A schematic of the cycle of activity of a
t.b.liverpool@leeds.ac.uk motor such as myosin with activity time

s-ry(s,t)
—_—
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viscoelasticity. The shear modulus of the active filament soby Hii(s,s')=h(s—s')[(5: —G~G~)+2ﬂl-ﬂ-+0(|a H|2)]
. . ) I I I S

lution apparently has a frequency dependent effective temgere In this and the foIIO\iving, for a fur{ctioA(x), oA

perature. There is a crossover from a shear modulus corre= 55/ 5. \We can thus decompose E@) into parallel and

sponding to Fhe bare temperature at high frequencies to rpendicular components in an expansioO{dr, |2)
modulus equivalent to the higher renormalized temperatur S ’

at lower frequencies, both with a scaling ef* In the

crossover regime, the modulappearsto have a stronger (%U(S,t)=f dS'h(S—S’)[—Kﬁi/rL+A(S’,t)(9§/ri
frequency dependence with a power 18/ (w) > w®, where
a>3/4. A simple consequence of filament polarity israall +agAagr 1+f (s,t) +HM(s 1), 2
ballistic component to the motion of the filament.
— ’ ’ 4
lll. EXPLICIT ANALYSIS ﬁtrH(S-t)—J ds'2h(s=s")[— kdgr|—ds Al+fi(st)
We model the filaments with the Kratky-Porod wormlike + fﬁm)(s,t), 3

chain[8,9], which takes into account theendingenergy cost
of the chain. The wormlike chain Hamiltonian is which are coupled by the constraint of inextensibility,
Hacd {R(S)} 1= («/2) [-"2,,dS(9?°R/ 9s?)2. The stretching en-
ergy of chain molecules is much higher than the bending st =3 (dsr 1 )*+O([asr ). (4)
energy and we may consider the chain as inextensible. The _ .
persistence length is defined lag= x/KgT. For simplicity, in most of this paper we consider the Rouse
The dynamics at finitd may be expressed by the Lange- model, which assumes local friction. We also focus on dilute
vin equation solutions. Long range hydrodynamics and nonzero concen-
tration of filaments will modify some of the resulsee be-
9 PR 9 JR low). For the Rouse moddi(s—s’)=45(s—s')/{, , where
—R(s,t)—f ds'H(s,s’):| — k=2t —(A(s’,t)—,” {, =4mn=2{,. We model the active velocities by a Gauss-
at Jds Js’ Js ; . . (m)\ _ m)\ _ .
ian noise with meaffi™)=0 and(fﬁ y=vm, a drift, re-
=f(s,t) +fM(s 1), (1)  flecting the polar nature of the filament, and mean square
fluctuationssf(™ = (M — (M) given by
where A(s,t) (a Lagrange multiplieris an instantaneous
fluctuating “tension,” which enforces thiecal inextensibil- m M) s ey a; , ,
ity of the chain. The inextensibility constraint fixes the ten- (8fM(s08f M (s"1)) =2 g_i2®5” (s=s)P(t-t"),
sion,A(s,t), by 0=|dR/ds|?>— 1. Because of this constraint, (5)
the dynamics of semiflexible filaments is nonlinear and gen-
erally insoluble. In addition to the thermal velocitgs,t), ~ Where®(t)=exp{—|t|/7} and{i,j} refer toL ||. The level of
there is an additional active velocitié€™(s,t) correlated —activityis controlled by the parametér. Correlations of the
over a timer. The polarity of the filament implies that the active force decay over a timg the typical activity period.
active forces have a mean direction along the contour of th&he constantsy; ; measure the relative partitioning of the
filaments(see Fig. 1 Hydrodynamics is taken into account activity between transverse and longitudinal components and
by the mobility tensoH(s,s’). For completeness, we note satisfy the relationshipzﬁ+ af= 1. In general, the force ap-
that there are a number of terms omitted from the stochastiplied by the motor protein on the filament will not be purely
differential equation(1). These are related to the nonlocal tangential, depending, for example, on its trajectory of ap-
nature of the hydrodynamic interactions, the nature of theproach of the filament and the conformation of the neck and
discretization of time, and the implementation of the inexten<hain regior{1]. Averaging over orientationgnly the longi-
sibility constraint. These terms do not affect the linear analytudinal component will have a nonzero average, because of
sis of this paper. In generd(s,t) will also depend omR(s,t) the filament polarity. In addition, the remainder of the energy
[10]. We assume that the activity does not affect the thermabf the actomyosin reaction that is not converted to directed
forces, i.e., the active proteins do not affect the collisions ofvork will be dissipated as heat contributing to the fluctua-
the solvent molecules with the filament. Then the thermations on the samé&eaction timescale. It is difficulta priori
velocities satisfy the fluctuation-dissipation theorem, ando estimate «;; and we choose somewhat arbitrarily,
f(s,t) have zero mean and Gaussian fluctuations, git®h  «, =a|= 1/\/2. Between active events the “motors” diffuse
by (fi(s,t)fj(s’,t"))=2kgTH;j(s,s") 6(t—t"). freely in the solution, so it is reasonable to assume that there
We consider rodlike segments and restrict the analysis ts no spatial correlation between active sites. We emphasize
length scales below L,, so that we can decompose the that unlike the thermal noise, the active noise correlatdms
dynamics into transverse and longitudinal motieaee Fig. 1~ not satisfy the fluctuation dissipation theorem.

and write the position of the filament aR(s,t)=[s Equations(2)—(4) are most easily studied by analyzing
—rH(s,t)]l](t)erL(s,t), wherese{—¢/2£/2} and U is a the motion of the bending modes of wave vectgr
time-dependent unit vector giving the orientation. We candnd  frequency . Defining  F(s,t)=f(dd/

obtain results within a systematic small gradient expansio27)(dw/2)F(q,w)expiwt+qgs) we only considery such
for |r,(s,t)],|r|(s,t)|<s. The mobility tensor is given thatw/a>qg>=/{. On length scales beloly,, C,(s) can be
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IV. DYNAMICS

The dynamics of inextensible filaments is anisotropic
[11,12,14,1% longitudinal motion has different relaxation
dynamics from the transverse. Viscous dissipation due to
longitudinal motion must be taken into account, giving a
time scale over which “tension” propagates along the
filament[11,12,14,1% From Eq.(6), we can calculate the
transverse  dynamic fluctuations, Rf(t)=<[rl(s,t)

—r.(s0)1%),

®
12— 34 n 4Tt r

J2
t3/48F(1/4)
37

RY(t)=

KM kg T+OE, 1), t>1
9

FIG. 2. The tangent correlation function for the active filament

of bare persistence length. ,=10, compared with those simple

wormlike chains of persistence lengthlof=10 andL; =5 using ~ There is a crossover from ballistic motion at short times to

units such thatvr=1. Inset:C,(s) nears=0. subdiffusive behavior at long times. Note the thermal and
active contributions to the subdiffusive regime.

obtained from the transverse fluctuations. The transverse dy- We can solve for the longitudinal motion self-consistently

namics are approximately given by as follows: we average ovemly the transverse fluctuations
and use the inextensibility constrairit4,15 to give a rela-

~ = (m) tionship between the tension and the longitudinal motion,
fl(qiw)-‘rfj_ (qiw)

T.(q,0)= : . , 6 19[1)(q,0)=T{?(q)]=K(w)A(q,0), defining a frequency
lo+aq dependenextensionakomplianceK (w) =K (w) + Ky(w),
which has equilibrium and active contributions. The
wherea=«/¢, . Corrections due to the tensioh(s,t) are  €quilibrium compliance given by Keg(w)

— 3/ —5/4¢; —-3/4 ;
of higher order in the gradient expansion. The transversé" 2 4kBT’,‘ (i, ) is not new and has been ob-
fluctuations at time are relaxed over a length scafe (t) tained previously12,13. We find, in addition, an active con-

= (at)'. Because of inextensibility, in Ed4) there is an  tioution given by
inducedtime-independeribngitudinal motionr{*)(s) due to

the averaged transverse motiait (°)(s)=(3(dqr,)?), - 20 7 [akir+ f(ak?r)—iw7]
The tangent correlation function is given by Ka(w)= p fk F(ak®) (2aki—iw)[f(akin) —iwr]’
(10
Ci(8)=(t(s,1) - t(0,))=(1— a5 {V(s,t) = a5 {P(O1)
+As L (S,1) - dsr L(01)), () where f(x)=x+1. In the limit w—0, it is given

by Ka(w)=2"2"07¢, k M (iw¢,)**=3(¢, 127) 7%
Using Egs.(4), (6), and(7), the tangent correlation function +O(w). The complianceék () is then substituted into the
has the form longitudinal dynamics. This self-consistent approach corre-
sponds to an infinite resummation of a set of diagrams of the
perturbation expansion iA [14]. We obtain the following
s 20 (dg 1-cogqs) equation for the longitudinal motion:
Ci(s)=exp, — — . (8

Ly o) 27 q[q*+(an) 1]

T1(q,0)+1{™(q,0)
iw+q2Kil(a))/§H .

The correlation function is plolt/tfd in Fig. 2. .For Ieng_th scales }‘”(q'w) —Tﬁo)(q)”:
less thant.=¢, (7)=(x7/{,)™" the effective persistence

length is approximately equal to the bare persistence length

L, whilst for length scales abové., the conformations

can be well modeled by a wormlike chain with a lower As defined abover,ﬁo)(s) is the time-independent motion in
renormalized persistence length given byg=L,(1  the longitudinal direction due to the averaged transverse mo-
+0 7, IkgT) 1. Dimensional analysis suggests a nae+  tion. Given this, we calculate the longitudinal dynamical
tive temperature scale given bgT,=0 7, . quctuationsRﬁ(t)z([rH(s,t)—rH(s,O)]Z)H,

11)
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G *(w)] (e (O]
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107
b FIG. 3. The magnitude of the high frequency
7 ] modulus for active filaments. We have chosen
units of length and time such thatr=1 and
N kgT/{, =1. In these units, the bare persistence
10 length of the filaments i4,=1. (a) The cross-
b over to a renormalized persistence lengtf
1 increasing =1/101. (b) Increasing activity corresponding to
activity 07, 7=kgT,=25,50,100.
® | ®
10° 10° 100 1 16 10 10° 10" 16° 1 100 10" 10°7
@ (b)
Rﬁ(t) tions (¢— ), this gives logarithmic corrections to the Rouse
model described above and implies a modification of the
202+ 02 338 8 t<r crossover length td .~ (« 7/, In[(x7/¢, )Y a])¥*. For con-
- a8 centrated solutions{( finite), the friction coefficient cross-
=\ 12,2 +t7,88F(1/8) (26)”(kgT+OZ, 7) >y over length is¢ .~ («7/¢, In[&a])"*.
m 77T é’ﬁ/g ) .
(12 VIl. ENTANGLED SOLUTIONS
Because of the drift ternithe directed motor-filament inter- For entangled solutions, the filament can be modeled as
action), the longitudinal diffusion is ballistic for all time confined in itstube Given a meshsizé&, we can define a
scales. tube diameteD ~L ,(¢/L,)®® and entanglement lengih,
4/5 < 4 p T
~Lp(&/Lp)*>[16]. The tube can be modeled as a confining
V. HIGH FREQUENCY VISCOELASTICITY potential forr, , which we can model aS/w|De=%k|rL|2

with k=«/L2 chosen so as to givélr, (L)—r,(0)?)*?

The complex shear modulus of a solution of semiflexibl —D. the tube di ter. We obtain the t t lati
filaments at high frequencies is dominated by the extensioneﬂjnceti’one ube diameter. Yve obtain the tangent correlation

compliance and G*(w)=Z&pK ™ *(0)=0.133/[Keq()
+Ky(w)] [7,12,13, which for a solution of passive fila-

ments is given byG* (w)xw®* For the active filaments, c (s)=1—i— 20 (dq 1-codqs)
using Eq.(10), we plot the absolute value of the complex ' L, o?) 2m Q[g*+ (ar) "1+ kik]
high frequency modulus for varying activity in Fig. 3. We
see a crossover from a modulus corresponding to the bare
temperaturd at high frequencies to a modulus equivalent to
the higher renormalized active temperatdre T, at high Our results should be relevant for recent experiments on
frequenciesboth with a scaling ofw®. In the crossover mixtures ofF-actin andS1 myosin[4]. The molecular motor
regime, the modulus appears to have a stronger frequengyyosin interacts withF-actin in the presence of ATP, under-
dependence with a power la@ (w) < w®, wherea>3/4. It going a conformational change in the process. Hydrophobic
is interesting to note that the crossover occurs over a verjnteractions between tails of a common variant, myosin I

VIIl. DISCUSSION

wide frequency range. [17], lead to multiheaded clusters, which can act as active
crosslinks[3,7] between two or more filaments. In contrast,
VI. HYDRODYNAMICS S1 myosin is a single-headed version of myosin that is with-

. . .. out a tail. Therefore, in generadgl myosin(ATP) interacts
Within the (screenell Oseen apprOX|r11|er1|'5|§on the mobility \yith singlepolar actin fila?nents appl;%ng biased nonequilib-
tensor is given by Ref[8], H;[r]=(e"""“/877|r)(8  (iym forces. Thesl experiments found surprisingly different
+rirj) for [r|[>a. The hydrodynamic screening length  steady-state and dynamic behavior of the filaments as com-
—oo for dilute solutions and is equal to the mesh sie pared to the puré&-actin systeni4].
=(pad) M for semidilute solutions with actin concentration = We now estimate the values for the parameters of our
pa and filament diametera. Therefore, h(s—s')  model corresponding to th&1 experiment. For an actin
=e 15751187 5|s—s'| in Egs.(2) and(3). For dilute solu- monomer concentratiop,, the fraction of bound myosig
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can be estimated using the equilibrium constptl k., be estimated as,=(fo/{)¢n". The typical forcef, and
=500 nM for the passive reaction actin active time scaler can be obtained from biochemical data.
+ myosin=actomyosin. The fraction of bound myosin is The viscosity of water isy=10"2 Pas and F-actin has di-
given by ¢=p,/(Keqt pa) leading a the typical separation ametera=7 nm and persistence length,=15 um. The
of the active sites (motorg on the filament, €,  stall force of myosinis=5 pN and the duration of the motor
=(¢ppmé®) '=alpa/ppm), Where py, is the concentra- cycle is 7=5 ms. The motor step sizs, is =10 nm. For
tion of S1 myosin. Then we may divide the filament into ATP saturation and .M S1 and 14uM F-actin concentra-
regions of sizef,, in which the motors are expected to act tions, we find¢~0.9 and¢,,~2a. This leads to an estimate
independently. Therefore  (f(s,)f(s",t"))=¢md(S  for @ r=kgT at 310 K giving L¥=3L, and €,
—s'){fm()f(t")). We assume that motor attachment on the—q 1 ;,m.
filaments is a Poisson process], i.e., that motors arrive at |y conclusion, we have studied a simple model of active
random timed, with a constant rata. The number of mo-  fjlaments and obtained different static and dynamical proper-
tors arriving during a periodt>1/\ has a Poisson distribu- ties as compared to passive semiflexible polymers. These
tion. The forces applied by each motor are assumed to decayjfferences should be observable with video microscopy and
over a time scale, so that the force at timeis given by in linear rheological experiments, and be relevant for experi-
a ments on actin-myosin systems.
Fn(1)= 2 7—fog(t—to), (13)

n=1
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